Toasted Sugar Recipe

Granulated caramel that can be used in any recipe as a one-to-one substitution for plain sugar.

A glass clamp mason jar filled with toasted sugar.

Serious Eats / Vicky Wasik

Why It Works

  • Gentle heat allows caramelization without harming sugar's crystalline nature, letting slow-toasted sugar behave exactly like plain granulated sugar.
  • Glass and ceramic are poor conductors of heat, insulating the sugar for slow and even caramelization.
  • Stirring eliminates hot spots, so the sugar won't overheat or liquefy, while encouraging the evaporation of water (a byproduct of caramelization).

Want to know something crazy? Sugar doesn't melt; it undergoes thermal decomposition. That may sound like a pedantic distinction, considering we've all watched sugar effectively melt into a pool of caramel atop crème brûlée, but the implications are huge—worthy of far more explanation than a mere tl;dr.

Man, who am I kidding; you're here for the tl;dr, aren't you? Okay, fine. Here goes: Caramelization occurs independent of melting. Consider the above photo exhibit A—the sugar pictured here is neither brown sugar nor turbinado, but granulated white sugar that I caramelized without melting. It's dry to the touch, and it performs exactly like granulated white sugar.

Except, you know, the part where it tastes like caramel.

That opens up a world of possibility, as it works flawlessly in recipes for buttercream, mousse, or cheesecake, which can accommodate only a small amount of caramel sauce before turning soupy or soft. It's also ideal for desserts that would be ruined by caramel syrup, which is by nature too hot for fragile angel food cake and too viscous for soft candies like marshmallows or nougat. And compared to caramel powder (made from liquid caramel, cooled and ground), it won't compact into a solid lump over time.

close-up of granulated caramelized sugar

Serious Eats/Vicky Wasik

Some bakers work around these issues by swapping in brown sugar for caramel, but why accept an imitation when you can have the real thing? Unlike quirky brown sugar, this "granulated caramel" won't alter the pH of doughs and batters, which can negatively impact how our favorite cookies and cakes spread, rise, and brown (in turn affecting their texture and crumb). For example, sugar cookies made with granulated caramel stay crisp at the edges, and oatmeal cookies spread like they should.

What's more, granulated caramel is free from the impurities that cause molasses-rich sugars to smoke and burn at high heat. Granulated caramel also won't curdle boiled milk, which can happen when you're making eggless custards and cajeta with brown sugar.

Now, with enough technical know-how, almost any recipe can be reformulated to accommodate brown sugar or caramel sauce/syrup/powder, but granulated caramel requires no such precaution. It's a perfect one-to-one replacement for white sugar; no calculations, no adjustments, no tinkering. Just use it to replace sugar in any recipe you love, from the meringue on Gramma's chocolate cream pie to my own angel food cake.

slice of angel food cake baked with granulated caramel

Serious Eats/Vicky Wasik

So what makes this magic possible, and why haven't we been doing it since the dawn of time? Well, the answer goes back to that whole melting-versus-thermal-decomposition thing, so bear with me for a sec as we wade into the nitty-gritty.

Melting is a phase change that has no impact on chemical composition, like the transition from ice to water. It's still good ol' H2O either way, right? Under normal conditions, the melting point of any given substance is fixed—when ice hits 32°F (0°C), there's nothing we can do to stop it from melting. Phase changes are also reversible; you can melt and refreeze ice as many times as you like, with no loss of quality on either end.

Thermal decomposition, on the other hand, is a chemical reaction that breaks down molecular bonds to produce new substances. While it's not a perfect analogy, imagine a pile of grass clippings releasing carbon dioxide as it turns to mulch in the sun—an irreversible process with variable results (i.e., no two handfuls of mulch are exactly alike, or composted to the same degree). Instead of occurring at a specific point, thermal decomposition occurs over a range of temperatures determined by the intensity and duration of heat.

Still with me?

Heat up some sugar on the stove, and it sure seems to melt, but if it were just a simple phase change, then melted sugar would be perfectly clear, not brown. Melted sugar would taste simple and sweet, not bitter and complex. Melted sugar would cool into crystals, not glass. None of those things are true because heat doesn't cause sugar to change phases. Heat breaks it down into something new: caramel.

In fact, caramel is so unlike sucrose (C12H22O11) that its nature can't be expressed by a single chemical formula. Instead, it's a mixture of caramelan (C15H18O9), caramelane (C12H9O9), caramelen (C36H48O24), caramelene (C36H25O25), caramelin (C24H26O13), and over a thousand other compounds "whose names," one scholar lamented in 1894, "science seems to have invented in a fit of despair."

Realizing caramel contained more permutations of carbon, hydrogen, and oxygen than scientists' cutesy naming scheme could accommodate, they gave up on trying to define it. They even gave up on nailing down a definitive melting point for sucrose. Unlike ice, or even coconut oil, sugar refused to liquefy at a single, consistent, scientifically reproducible temperature. The point of caramelization proved even trickier to isolate, in some experiments occurring at a mere 340°F (171°C) and in others holding out past 360°F (182°C).

If you think that's confusing, you're not alone. Scientists have a better grasp of quantum mechanics than of caramel, which is still poorly understood. But in 2011, a team of researchers finally established that caramelization is a product of thermal decomposition, not melting (you can read the paper here). Not only that, they determined it's technologically impossible to document the melting of sucrose independent of caramelization.

With the right technique, we can caramelize sugar without liquefying it at all.

The significance of that discovery can't be overstated, yet the food world collectively shrugged. Whether sugar melts or decomposes, the results are the same: liquid caramel. Everyone heard the facts, but no one caught the implication. If sugar is governed by thermal decomposition, then caramelization doesn't happen at a specific temperature; it happens across a spectrum, in which liquid caramel happens to be at the end. With the right technique, we can caramelize sugar without liquefying it at all.

High-Heat Versus Low-Heat Caramelization

Caramelization and liquefaction only go hand in hand with high-heat techniques, which speed thermal decomposition. On the stovetop or under a blowtorch, sugar races through the caramelization process so fast, it liquefies in an instant. But in the gentle heat of a 300°F (149°C) oven, the process is drawn out, revealing myriad stages of caramelization in a crystalline state.

Check it out.

different shades of granulated sugar by the hour

Serious Eats/Vicky Wasik

Despite a modest progression of color, the sugar goes through extreme changes in flavor every step of the way. With only one hour of toasting, it mellows with a complexity totally unlike plain sugar. After another hour, it's evocative of caramel the same way unrefined sugar hints of molasses, surely but subtly.

Within three hours, thermal decomposition liberates enough water that the sugar begins to clump as stronger caramel notes develop, changes that intensify into hour four. At five hours, the clumping effect makes granulated caramel visually identical to light brown sugar but with a unique flavor of its own. Though undeniably caramel, it lacks the bitter notes synonymous with high-heat techniques, giving it a lighter profile. Beyond that point, thermal decomposition will finally liquefy the sugar.

Because water is a by-product of caramelization, and relatively low "roasting" temperatures prevent it from being driven off as steam, deeply caramelized sugar is super clumpy. Stirring from time to time helps release entrapped moisture, but not enough to stop it from cooling into hard, lava rock–like pieces.

Fortunately, these chunks are highly porous and easily demolished in a food processor, where they can be ground until powdery and fine. This free-flowing granulated caramel behaves like white sugar in terms of shelf life, and it never needs to be ground again so long as it's kept in an airtight container.

20160329-roasted-sugar-vicky-wasik--2.jpg

However alluring the darkest shades of caramel are, I'm most excited by the lightest hues. A single hour of toasting won't develop any discernible caramel flavor, but it tames the intensity of marshmallows, angel food cake, and fudge—recipes that rely on sugar for structure, but have a reputation for tooth-aching sweetness.

Lightly toasted sugar brings these desserts into balance without sacrificing structure or distracting from their classic flavor (for small batches, see our guide to quick toasting sugar). In most recipes, toasted sugar even cuts down on the need for salt—a real boon for those on sodium-restricted diets. Not only does toasted sugar taste less sweet, it has less sucrose, fewer calories, and a lower glycemic index than plain sugar. How much lower would depend on the extent of thermal decomposition, but it's a promising notion.

But alas, I digress. My motivations have nothing to do with dietary considerations, and neither should yours. Whether caramelized a little or a lot, toasted sugar is crazy delicious, and I hope you try it at home. The technique itself is as straightforward as toasting bread crumbs: Stir occasionally, and let color be your guide.

a spoonful of toasted sugar

Serious Eats/Vicky Wasik

As long as thermal decomposition halts before anything liquefies, granulated caramel behaves like sugar, so there are no caveats on its use. I've been playing around with this technique since 2010, having stumbled into it long before I understood the science, yet I've never encountered any technical difficulties with substitutions. So set aside that blowtorch and step back from the stove. There's a new caramel in town, and it has the power to change every recipe you've ever known.

4:29

How to Make Toasted Sugar

May 16, 2016

Recipe Facts

4.7

(17)

Cook: 4 hrs
Active: 15 mins
Total: 4 hrs
Serves: 72 servings
Makes: 9 cups

Rate & Comment

Ingredients

  • 4 pounds (9 cups; 1.8kg) granulated white sugar (see note)

Directions

  1. Adjust oven rack to center position and preheat oven to 300°F (150°C). Pour sugar into a 9- by 13-inch glass or ceramic baking dish. Toast until the sugar turns ivory, about 1 hour. Stir thoroughly and continue roasting, pausing to stir every 30 minutes. The sugar will produce steam as a byproduct of toasting, so it must be stirred well to allow that moisture to escape. Stirring should also help move hot sugar from the edges toward the center, and cool sugar from the center toward the edges, for even toasting. Continue toasting and stirring every 30 minutes until the sugar has darkened to the desired degree, from a light beige to the color of traditional brown sugar, between 2 and 4 hours more.

  2. When the sugar has finished toasting, set aside and cool to room temperature, stirring from time to time to speed the process and allow for continued evaporation of steam. Alternatively, the cooling process can be sped along by pouring the sugar into a large, heat safe container. Once fully cool, transfer to an airtight container and store as you would plain white sugar. It can be used interchangeably, by weight or volume, in any recipe that calls for white sugar.

    20181128-toasted-sugar-vicky-wasik-1-4
  3. Troubleshooting: In an oven that runs hot, or when using a different volume of sugar, or a different size baking dish, or a metal dish, the sugar will heat more rapidly, and may begin to liquefy much sooner than expected. If this happens, immediately pour the dry sugar into a large stainless steel bowl, leaving the melted caramel behind. If the sugar is not stirred thoroughly throughout the toasting process, it may clump severely along the way and as it cools; should this happen, grind the cooled sugar in a food processor until powdery and fine.

    20160329-roasted-sugar-vicky-wasik--3.jpg

Special Equipment

9- by 13-inch glass or ceramic baking dish, Food processor (optional)

Notes

While this recipe can be scaled to any size, considering the time and effort involved, I find larger batches more worthwhile; for smaller batches, check out our guide to quick toasted sugar. In either case, refined cane sugar or beet sugar will work equally well; organic, raw, and semi-refined styles will be more inclined to melt prematurely due to their natural fructose content.

Nutrition Facts (per serving)
98 Calories
0g Fat
25g Carbs
0g Protein
Show Full Nutrition Label Hide Full Nutrition Label
×
Nutrition Facts
Servings: 72
Amount per serving
Calories 98
% Daily Value*
Total Fat 0g 0%
Saturated Fat 0g 0%
Cholesterol 0mg 0%
Sodium 0mg 0%
Total Carbohydrate 25g 9%
Dietary Fiber 0g 0%
Total Sugars 25g
Protein 0g
Vitamin C 0mg 0%
Calcium 0mg 0%
Iron 0mg 0%
Potassium 1mg 0%
*The % Daily Value (DV) tells you how much a nutrient in a food serving contributes to a daily diet. 2,000 calories a day is used for general nutrition advice.
(Nutrition information is calculated using an ingredient database and should be considered an estimate.)